skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rassoul-Agha, Firas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We establish the existence of generalized Busemann functions and Gibbs-Dobrushin-Landford-Ruelle measures for a general class of lattice random walks in random potentials with finitely many admissible steps. This class encompasses directed polymers in random environments, first- and last-passage percolation, and elliptic random walks in both static and dynamic random environments in all dimensions and with minimal assumptions on the random potential. 
    more » « less
    Free, publicly-accessible full text available September 29, 2026
  2. Free, publicly-accessible full text available June 7, 2026
  3. We give an explicit description of a family of jointly invariant measures of the KPZ equation singled out by asymptotic slope conditions. These are couplings of Brownian motions with drift, and can be extended to a cadlag process indexed by all real drift parameters. We name this process the KPZ horizon (KPZH). As a corollary, we resolve a recent conjecture by showing the existence of a random, countably infinite dense set of drift values at which the Busemann process of the KPZ equation is discontinuous. This signals instability, and shows the failure of the one force–one solution principle and the existence of at least two extremal semi-infinite polymer measures in the exceptional directions. The low-temperature limit of the KPZH is the stationary horizon (SH), the unique jointly invariant measure of the KPZ fixed point under the same slope conditions. The high-temperature limit of the KPZH is a coupling of Brownian motions that differ by linear shifts, which is jointly invariant under the Edwards–Wilkinson fixed point. 
    more » « less
  4. Abstract We show that two semi‐infinite positive temperature polymers coalesce on the scale predicted by KPZ (Kardar–Parisi–Zhang) universality. The two polymer paths have the same asymptotic direction and evolve in the same environment, independently until coalescence. If they start at distance apart, their coalescence occurs on the scale . It follows that the total variation distance of two semi‐infinite polymer measures decays on this same scale. Our results are upper and lower bounds on probabilities and expectations that match, up to constant factors and occasional logarithmic corrections. Our proofs are done in the context of the solvable inverse‐gamma polymer model, but without appeal to integrable probability. With minor modifications, our proofs give also bounds on transversal fluctuations of the polymer path. As the free energy of a directed polymer is a discretization of a stochastically forced viscous Hamilton–Jacobi equation, our results suggest that the hyperbolicity phenomenon of such equations obeys the KPZ exponent. 
    more » « less
  5. We study first-passage percolation through related optimization problems over paths of restricted length. The path length variable is in duality with a shift of the weights. This puts into a convex duality framework old observations about the convergence of the normalized Euclidean length of geodesics due to Hammersley and Welsh, Smythe and Wierman, and Kesten, and leads to new results about geodesic length and the regularity of the shape function as a function of the weight shift. For points far enough away from the origin, the ratio of the geodesic length and the ℓ<#comment/> 1 \ell ^1 distance to the endpoint is uniformly bounded away from one. The shape function is a strictly concave function of the weight shift. Atoms of the weight distribution generate singularities, that is, points of nondifferentiability, in this function. We generalize to all distributions, directions and dimensions an old singularity result of Steele and Zhang for the planar Bernoulli case. When the weight distribution has two or more atoms, a dense set of shifts produces singularities. The results come from a combination of the convex duality, the shape theorems of the different first-passage optimization problems, and modification arguments. 
    more » « less
  6. We consider planar directed last-passage percolation on the square lattice with general i.i.d. weights and study the geometry of the full set of semi-infinite geodesics in a typical realization of the random environment. The structure of the geodesics is studied through the properties of the Busemann functions viewed as a stochastic process indexed by the asymptotic direction. Our results are further connected to the ergodic program for and stability properties of random Hamilton–Jacobi equations. In the exactly solvable exponential model, our results specialize to give the first complete characterization of the uniqueness and coalescence structure of the entire family of semi-infinite geodesics for any model of this type. Furthermore, we compute statistics of locations of instability, where we discover an unexpected connection to simple symmetric random walk. 
    more » « less